Step 1: Quadratic chirp signal
Generate a quadratic chirp signal from 10 Hz to 120 Hz in 1 second with 10,000 sampling points.
ximport numpy as npimport scipyimport matplotlib.pyplot as plt
# Generate a quadratic chirp signaldt = 0.0001rate = int(1/dt)ts = np.linspace(0, 1, int(1/dt))data = scipy.signal.chirp(ts, 10, 1, 120, method='quadratic')Step 2: S Transform Spectrogram
xxxxxxxxxximport TFchirp
# Compute S Transform Spectrogramspectrogram = TFchirp.sTransform(data, sample_rate=rate)plt.imshow(abs(spectrogram), origin='lower', aspect='auto')plt.title('Original Spectrogram')plt.show()
Step 3: Quick recovery of full ts from S transform * 0 frequency row*
(This recovered ts is computed based on the fact that the 0 frequency row always contain the full FFT result of the ts in this program by design.)
xxxxxxxxxx# Quick Recovery of ts from S Transform 0 frequency rowrecovered_ts = TFchirp.recoverS(spectrogram)plt.plot(recovered_ts-data)plt.title('Time Series Reconstruction Error')plt.show()
Step 4: Recovered spectrogram:
xxxxxxxxxx# Compute S Transform Spectrogram on the recovered time seriesrecoveredSpectrogram = TFchirp.sTransform(recovered_ts, sample_rate=rate, frange=[0,500])plt.imshow(abs(recoveredSpectrogram), origin='lower', aspect='auto')plt.title('Recovered Specctrogram')plt.show()
Step 5: The real inverse S transform
xxxxxxxxxx# Quick Inverse of ts from S Transforminverse_ts, inverse_tsFFT = TFchirp.inverseS(spectrogram)plt.plot(inverse_ts)plt.plot(inverse_ts-data)plt.title('Time Series Reconstruction Error')plt.legend(['Recovered ts', 'Error'])plt.show()
Step 6: Recovered spectrogram on the real inverse S transform ts
xxxxxxxxxx# Compute S Transform Spectrogram on the recovered time seriesinverseSpectrogram = TFchirp.sTransform(inverse_ts, sample_rate=rate, frange=[0,500])plt.imshow(abs(inverseSpectrogram), origin='lower', aspect='auto')plt.title('Recovered Specctrogram')plt.show()